
1

TITLE: IMAGE FILTERING USING AVERAGING FILTER

1.0 INTRODUCTION

Image processing is any form of information processing for which the input is an

image, such as photographs or frames of video and the output is not necessarily an image,

but can be for instance a set of features of the image. Most image-processing techniques

involve treating the image as a two-dimensional signal and applying standard signal-

processing techniques to it. Image filtering is a process by which we can enhance (or

otherwise modify, warp, and mutilate) images and the procedure of reducing or

attenuating the noise components of a measured signal is commonly known as filtering.

Image filtering also allows us to apply various effects on images. There are many

different ways to design filters, but the most common ones have their roots in simple

averaging.

In this task, we have to experiment an image filtering process by using an

averaging filtering. An image that was added with noise will be filtered by using

averaging filter. Averaging is used to reduce the effects of noise, then smoothing the

image. Averaging filter also can make an image dimmer or brighter. Every output will

show and original image that was added by noise and the filtered image using averaging

filter. So we can compare an original images and filtered images. Graphic User Interface

was build with all needed parameters to show an averaging filtering process

http://en.wikipedia.org/wiki/Information_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Signal_processing

2

2.0 OBJECTIVES

The filtering method can be build by using Matlab. In order to realize it, several

objectives are stated as below:

1) To understand image filtering method by using averaging filter.

2) To apply Matlab software in order to filter noisy images.

3) To recognize suitable coding to build an averaging filter program.

4) To build an interface between user and the program that called Graphic User

Interface (GUI).

3.0 SCOPE

For this task, we are required to apply an Image filtering by using an averaging

filter. Averaging is an operation that takes an image as input, and produces a new image

as output. There are two common types of smoothing methods: filtering (averaging) and

local regression. Each smoothing method requires a span. The span defines a window of

neighboring points to include in the smoothing calculation for each data point. We have

to select an image that was added with noise and we are going to use the image

processing which is the application of averaging filter. It consists of several processes for

example from storing images in computer memory and adds with noise. The noisy

images will be filtered using an averaging filter to see the effect. With such a small filter

matrix, this gives only a very soft blur and with a bigger filter you can blur it a bit more.

Hence, more smooth that we want, the bigger the filter has to be.

3

4.0 LITERATURE REVIEW

4.1 MATLAB

MATLAB® is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. Typical uses

include Math and computation Algorithm development Data acquisition Modeling,

simulation, and prototyping Data analysis, exploration, and visualization Scientific and

engineering graphics Application development, including graphical user interface

building MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. This allows you to solve many technical computing

problems, especially those with matrix and vector formulations, in a fraction of the time it

would take to write a program in a scalar non interactive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to

provide easy access to matrix software developed by the LINPACK and EISPACK

projects.

Image Processing In Matlab

 When working with images in Matlab, there are many things to keep in mind

such as loading an image, using the right format, saving the data as different data types,

how to display an image, conversion between different image formats, etc. there are some

of the commands designed for these operations. Most of these commands require user to

have the Image processing tool box installed with Matlab. To find out if it is installed,

type ver at the Matlab prompt. This gives you a list of what tool boxes that are installed

on your system. For further reference on image handling in Matlab you are recommended

to use Matlab's help browser. There is an extensive (and quite good) on-line manual for

the Image processing tool box that you can access via Matlab's help browser.

4

Fundamentals

A digital image is composed of pixels which can be thought of as small dots on

the screen. A digital image is an instruction of how to color each pixel. A typical size of

an image is 512-by-512 pixels. In the general case we say that an image is of size m-by-n

if it is composed of m pixels in the vertical direction and n pixels in the horizontal

direction. Let us say that we have an image on the format 512-by-1024 pixels. This

means that the data for the image must contain information about 524288 pixels, which

requires a lot of memory. Hence, compressing images is essential for efficient image

processing. We can see how Fourier analysis and Wavelet analysis can help us to

compress an image significantly. There are also a few "computer scientific" tricks (for

example entropy coding) to reduce the amount of data required to store an image.

Image formats supported by Matlab

The following image formats are supported by Matlab:

 BMP

 HDF

 JPEG

 PCX

 TIFF

 XWB

Most images you find on the Internet are JPEG-images which is the name for one of

the most widely used compression standards for images. If you have stored an image

you can usually see from the suffix what format it is stored in. For example, an image

named myimage.jpg is stored in the JPEG format and we will see later on that we can

load an image of this format into Matlab.

5

Intensity image (gray scale image)

This is the equivalent to a "gray scale image" and this is the image we will mostly work

with in this course. It represents an image as a matrix where every element has a value

corresponding to how bright/dark the pixel at the corresponding position should be

colored. There are two ways to represent the number that represents the brightness of the

pixel: The double class (or data type). This assigns a floating number ("a number with

decimals") between 0 and 1 to each pixel. The value 0 corresponds to black and the value

1 corresponds to white. The other class is called uint8 which assigns an integer between 0

and 255 to represent the brightness of a pixel. The value 0 corresponds to black and 255

to white. The class uint8 only requires roughly 1/8 of the storage compared to the class

double. On the other hand, many mathematical functions can only be applied to the

double class. We will see later how to convert between double and uint8.

Indexed image

This is a practical way of representing color images. (In this course we will mostly work

with gray scale images but once you have learned how to work with a gray scale image

you will also know the principle how to work with color images.) An indexed image

stores an image as two matrices. The first matrix has the same size as the image and one

number for each pixel. The second matrix is called the color map and its size may be

different from the image. The numbers in the first matrix is an instruction of what number

to use in the color map matrix.

RGB image

This is another format for color images. It represents an image with three matrices of

sizes matching the image format. Each matrix corresponds to one of the colors red, green

or blue and gives an instruction of how much of each of these colors a certain pixel

should use.

6

IMAGE FILTERING

Image filtering is a process by which we can enhance (or otherwise modify, warp,

and mutilate) images. I've seen enough posts asking about this that I've made this info file

to answer most people's questions. This file has information (so far) only about

"compare" filters, which compare a pixel somehow with the pixels around it to filter the

image. Another term that may be important is that we're doing "weighted" filtering. (as

opposed to "equal" filtering) That means that different pixels have different importance in

calculating the image.

Using Averaging Filter

 The Mean Filter or averaging filter can be used to remove noise from an image. It

is a filter that takes the average of the current pixel and it's neighbors.

This is an ordinary blur filter. We can test it on the following image with "Salt

and Pepper" Noise:

 (1a) (1b)

Figure:(1a) Image with "Salt and Pepper" Noise (1b)When applied, it gives a blurry result

7

Using Linear Filtering

 You can use linear filtering to remove certain types of noise. Certain filters, such

as averaging or Gaussian filters, are appropriate for this purpose. For example, an

averaging filter is useful for removing grain noise from a photograph. Because each pixel

gets set to the average of the pixels in its neighborhood, local variations caused by grain

are reduced.

Using Median Filtering

Median filtering is similar to using an averaging filter, in that each output pixel is

set to an average of the pixel values in the neighborhood of the corresponding input pixel.

However, with median filtering, the value of an output pixel is determined by the median

of the neighborhood pixels, rather than the mean. The median is much less sensitive than

the mean to extreme values (called outliers). Median filtering is therefore better able to

remove these outliers without reducing the sharpness of the image. The medfilt2 function

implements median filtering.

The medfilt2 function implements median filtering. Note Median filtering is a

specific case of order-statistic filtering, also known as rank filtering. For information

about order-statistic filtering, see the reference page for the ordfilt2 function. The

following example compares using an averaging filter and medfilt2 to remove salt and

pepper noise. This type of noise consists of random pixels' being set to black or white

(the extremes of the data range). In both cases the size of the neighborhood used for

filtering is 3-by-3. Read in the image and display it. I = imread('eight.tif');

Using Adaptive Filtering

The wiener2 function applies a Wiener filter (a type of linear filter) to an image

adaptively, tailoring itself to the local image variance. Where the variance is large,

wiener2 performs little smoothing. Where the variance is small, wiener2 performs more

smoothing. This approach often produces better results than linear filtering. The adaptive

filter is more selective than a comparable linear filter, preserving edges and other high-

frequency parts of an image. In addition, there are no design tasks; the wiener2 function

8

handles all preliminary computations and implements the filter for an input image.

wiener2, however, does require more computation time than linear filtering. wiener2

works best when the noise is constant-power ("white") additive noise, such as Gaussian

noise. The example below applies wiener2 to an image of Saturn that has had Gaussian

noise added. For an interactive demonstration of filtering to remove noise, try running

nrfiltdemo.

 MATLAB has extensive facilities for displaying vectors and matrices as graphs,

as well as annotating and printing these graphs. It includes high-level functions for two-

dimensional and three-dimensional data visualization, image processing, animation, and

presentation graphics. It also includes low-level functions that allow you to fully

customize the appearance of graphics as well as to build complete graphical user

interfaces(GUIs) on your MATLAB applications. The MATLAB Application Program

Interface (API). This is a library that allows you to write C and Fortran programs that

interact with MATLAB. It includes facilities for calling routines from MATLAB

(dynamic linking), calling MATLAB as a computational engine, and for reading and

writing MAT-files.

9

4.2 GRAPHICAL USER INTERFACE (GUIs)

A graphical user interface (GUI) is a graphical display that contains devices, or

components, that enable a user to perform interactive tasks. To perform these tasks, the

user of the GUI does not have to create a script or type commands at the command line.

Often, the user does not have to know the details of the task at hand. The GUI

components can be menus, toolbars, push buttons, radio buttons, list boxes, and sliders.

In MATLAB, a GUI can also display data in tabular form or as plots, and can group

related components.GUI is also a type of user interface which allows people to interact

with a computer and computer-controlled devices which employ graphical icons, visual

indicators or special graphical elements called "widgets", along with text, labels or text

navigation to represent the information and actions available to a user. The actions are

usually performed through direct manipulation of the graphical elements. Use of this

acronym led to creation of the neologism guituitive (an interface which is intuitive).

GUIDE, the MATLAB graphical user interface development environment, provides a

set of tools for creating graphical user interfaces (GUIs). These tools simplify the process

of laying out and programming GUIs.

GUI Layout

Using the GUIDE Layout Editor, you can populate a GUI by clicking and dragging

GUI components such as axes, panels, buttons, text fields, sliders, and so on into the

layout area. You can also create menus and context menus for the GUI. From the Layout

Editor, you can size the GUI, modify component look and feel, align components, set tab

order, view a hierarchical list of the component objects, and set GUI options.

GUI Programming

GUIDE automatically generates an M-file that controls how the GUI operates. This M-

file provides code to initialize the GUI and contains a framework for the GUI callbacks

the routines that execute when a user interacts with a GUI component. Using the M-file

editor, you can add code to the callbacks to perform the functions you want.

10

To start GUIDE, enter guide at the MATLAB prompt. This displays the GUIDE

Quick Start dialog, as shown in the following figure.

Figure 2: Start dialog box

When you open a GUI in GUIDE, it is displayed in the Layout Editor, which is

the control panel for all of the GUIDE tools with a blank GUI template. User can lay out

the GUI by dragging components, such as push buttons, pop-up menus, or axes, from the

component palette, at the left side of the Layout Editor, into the layout area as we need. It

is appears as in the following figure. The GUIDE Quick Start dialog provides templates

for several basic types of GUIs. The advantage of using templates is that often you can

modify a template more quickly and easily than by starting from a blank GUI. When user

select a template in the Templates pane, a preview of it appears in the right-hand pane. To

display the names of the GUI components in the component palette, select the

preferences from the File menu and check the box next to show names in component

palette.

11

 Figure 3:Blank GUI

 Figure 4: GUI with preference template.

For this task, the design is about to filter a picture which add by noise or without

noise. There are seven pushbutton represent different functions which are for loading

picture, adding noise, filtering image and histogram.

12

Loading picture

User can loading picture from any pathname or location by clicking at LOAD PICTURE

and it will displayed in GUI .

Figure 5: Loading picture

Add noise

There are four types of noise that user can choose which are Salt & peper, poisson,

Gaussian and speckle and can add to original image by clicking Come on..Go!Go!Go!.

Figure 6: Image add with noise (Salt & pepper)

13

Filtering image

User can prefer either to filter an image without noise or an image add with noise by
clicking button WITHOUT NOISE or WITH NOISE in Filtering Image menu.

Figure 7: Filtering image without noise

Figure 8: Filtering image with noise

14

Histogram

To view image’s histogram, user can click the button on Histogram menu and the
program will show the histogram of image either for image WITHOUT NOISE or WITH
NOISE.

Figure 9: Image’s histogram

Procedure can be repeated to view the effect of other noises and user can see the result to

an image before and after using averaging filter.

4.3 AVERAGING FILTER

There are two common types of smoothing methods: filtering (averaging) and

local regression. Each smoothing method requires a span. The span defines a window of

neighboring points to include in the smoothing calculation for each data point. This

window moves across the data set as the smoothed response value is calculated for each

predictor value. A large span increases the smoothness but decreases the resolution of the

smoothed data set, while a small span decreases the smoothness but increases the

resolution of the smoothed data set. The optimal span value depends on your data set and

the smoothing method, and usually requires some experimentation to find. The Curve

15

Fitting Toolbox supports these smoothing methods: Moving average filtering -- Lowpass

filter that takes the average of neighboring data points.

A moving average filter smoothes data by replacing each data point with the

average of the neighboring data points defined within the span. This process is equivalent

to lowpass filtering with the response of the smoothing given by the difference equation

))(...)1()((
12

1
)(NiyNiyNiy

N
iys

Where ys(i) is the smoothed value for the with data point, N is the number of

neighboring data points on either side of ys(i), and 2N+1 is the span. The moving average

smoothing method used by the Curve Fitting Toolbox follows these rules:

 The span must be odd.

 The data point to be smoothed must be at the center of the span.

 The span is adjusted for data points that cannot accommodate the specified

number of neighbors on either side.

 The end points are not smoothed because a span cannot be defined.

Note that you can use MATLAB's filter function to implement difference

equations such as the one shown above. However, because of the way that the end points

are treated, the toolbox moving average result will differ from the result returned by

filter. Refer to Difference Equations and Filtering in the MATLAB documentation for

more information. For example, suppose you smooth data using a moving average filter

with a span of 5. Using the rules described above, the first four elements of ys are given

by

ys(1) = y(1)

ys(2) = (y(1)+y(2)+y(3))/3

ys(3) = (y(1)+y(2)+y(3)+y(4)+y(5))/5

ys(4) = (y(2)+y(3)+y(4)+y(5)+y(6))/5

16

Note that ys(1), ys(2), ... ,ys(end) refer to the order of the data after sorting, and

not necessarily the original order. The smoothed values and spans for the first four data

points of a generated data set are shown below.

Figure10: Moving smoothing Averaging

Plot (a) indicates that the first data point is not smoothed because a span cannot be

constructed. Plot (b) indicates that the second data point is smoothed using a span of

three. Plots (c) and (d) indicate that a span of five is used to calculate the smoothed value.

Smoothing Data Lowness and Loess: Local Regression Smoothing

Filtering of images, either by correlation or convolution can be performed using

the toolbox function imfilter. This example filters the image in the file blood1.tif with a

17

5-by-5 filter containing equal weights. Such a filter is often called an averaging filter. I =

imread('blood1.tif');

h = ones(5,5) / 25;

I2 = imfilter(I,h);

imshow(I), title('Original image')

figure, imshow(I2), title('Filtered image')

Figure 11: Original & filtered image

Data Types The imfilter function handles data types similar to the way the image

arithmetic functions do, as described in Image Arithmetic Truncation Rules. The output

image has the same data type, or numeric class, as the input image. The imfilter function

computes the value of each output pixel using double-precision, floating-point arithmetic.

If the result exceeds the range of the data type, the imfilter function truncates the result to

that data type's allowed range. If it is an integer data type, imfilter rounds fractional

values. Because of the truncation behavior, you may sometimes want to consider

converting your image to a different data type before calling imfilter. In this example, the

output of imfilter has negative values when the input is of class double

A = magic(5)

A =

 17 24 1 8 15

 23 5 7 14 16

 4 6 13 20 22

18

 10 12 19 21 3

 11 18 25 2 9

h = [-1 0 1]

h =

-1 0 1

imfilter(A,h)

ans =

 24 -16 -16 14 -8

 5 -16 9 9 -14

 6 9 14 9 -20

 12 9 9 -16 -21

 18 14 -16 -16 -2

Notice that the result has negative values. Now suppose A was of class uint8, instead of

double. A = uint8(magic(5));

imfilter(A,h)

ans =

 24 0 0 14 0

 5 0 9 9 0

 6 9 14 9 0

 12 9 9 0 0

 18 14 0 0 0

Since the input to imfilter is of class uint8, the output also is of class uint8, and so the

negative values are truncated to 0. In such cases, it may be appropriate to convert the

image to another type, such as a signed integer type, single, or double, before calling

imfilter

19

Correlation and Convolution Options. The imfilter function can perform filtering using

either correlation or convolution. It uses correlation by default, because the filter design

functions, described in Filter Design, and the fspecial function, described in Using

Predefined Filter Types, produce correlation kernels. However, if you want to perform

filtering using convolution instead, you can pass the string 'conv' as optional input

argument to imfilter. For example, A = magic(5);

h = [-1 0 1]

imfilter(A,h) % filter using correlation

ans =

 24 -16 -16 14 -8

 5 -16 9 9 -14

 6 9 14 9 -20

 12 9 9 -16 -21

 18 14 -16 -16 -2

imfilter(A,h,'conv') % filter using convolution

ans =

-24 16 16 -14 8

-5 16 -9 -9 14

-6 -9 -14 -9 20

-12 -9 -9 16 21

-18 -14 16 16 2

Boundary Padding Options

When computing an output pixel at the boundary of an image, a portion of the

convolution or correlation kernel is usually off the edge of the image, as illustrated in the

figure below.

20

The imfilter function normally fills in these "off-the-edge" image pixels by assuming that

they are 0. This is called zero-padding and is illustrated in the figure below.

When filtering an image, zero-padding can result in a dark band around the edge of the

image, as shown in this example. I = imread('blood1.tif');

h = ones(5,5)/25;

I2 = imfilter(I,h);

imshow(I), title('Original image')

figure, imshow(I2), title('Filtered image')

21

Figure 12: Original image & Image with black border

To eliminate the zero-padding artifacts around the edge of the image, imfilter offers an

alternative boundary padding method called border replication. In border replication, the

value of any pixel outside the image is determined by replicating the value from the

nearest border pixel. This is illustrated in the figure below.

To filter using border replication, pass the additional optional argument 'replicate' to

imfilter. I3 = imfilter(I,h,'replicate');

figure, imshow(I3), title('Filtered with border replication')

22

1.

Figure 13 : Image border with replication

Multidimensional Filtering

The imfilter function can handle both multidimensional images and multidimensional

filters. A convenient property of filtering is that filtering a three-dimensional image with

a two-dimensional filter is equivalent to filtering each plane of the three-dimensional

image individually with the same two-dimensional filter. This property makes it easy, for

example, to filter each color plane of a truecolor image with the same filter. rgb =

imread('flowers.tif');

h = ones(5,5) / 25;

rgb2 = imfilter(rgb,h);

imshow(rgb), title('Original image')

figure, imshow(rgb2), title('Filtered image')

Figure 14: Original & Filtered Image

23

5.0 METHODOLOGY

Before starting on this assignment, there were discussion that been made by the

group members on how the flow of our work must be done. First of all the group

members must done some research on averaging filters. After the researches have been

done, all the information will be collected and studied. Then after that the work of

designing the filters MATLAB program will be executed. After the programming have

finished the designing of the Graphic User Interface (GUI) will be done. Then from this

point onward the programs will undergo some trial and error to find whether the

programs are right and the result is as expected. If the programs occurs error, so the

designing will be done again until the desired result is accomplish. Then after the trial

and error has been done, the analysis of our work will be done and then the accomplished

result will be submitted.

24

G R O U P
D I S C U S S I O N

R E S E A R C H

D E S I G N I N G
M A T L A B

P R O G R A M

D E S I G N I N G G U I

R U N

R E S U L T

A N A L Y S I S

E N D

S T A R T

Y E S

N O

Chart 1: The Procedure Flow Chart

25

BASIC INSTRUCTION ON THE GUI

1

2

3

4

Column 1 Column 2

Column 3 Column 4

26

[1] Picture is being uploaded into the GUI interface. There are 4 columns of the GUI and
each column represents the process that will take place in the GUI. The first will display
the original image.

[2] Then the ADD NOISE command will be initiated, the image in the second column
will display the image that has been generated with noise. There are 4 types of noise that
can select in the command there are:

1. Gaussian noise
2. Salt and Pepper noise
3. Speckle noise
4. Poisson noise

Each noise have their own characteristic.

[3] Then the image will be filtered using average filter command (FILTERING IMAGE).
The third column will generate the without noise command meaning that the image is
filtered without the presence of the noise and the forth column will generate the with
noise command meaning that the image is filtered with the presence of noise.

[4] Then the histogram command is use to displayed the histogram graph of the image.
There 2 type of histogram that is:

1. The histogram of the image without the presence of noise.
2. The histogram of the image with the presence of noise.

27

THE GUI PUSH BUTTON COMMANDS AND INSTRUCTIONS.

Command Instructions

The LOAD PICTURE command is use to
load image from the picture file in the
computer.

The ADD NOISE command is use to insert
noise to image that have been load into the
GUI. There are 4 types of noise that can be
generate onto the image:
[1] Poisson
[2] Salt and Pepper
[3] Speckle
[4] Gaussian

The FILTERING IMAGE command is use
to filter the image that have been uploaded
into the GUI. There 2 command in the push
buttons that is:
[1] WITHOUT NOISE
 use to filter the image without the
present of the noise
[2] WITH NOISE
 use to filter the image with the present
of the noise

The HISTOGRAM is use to show the
histogram graph of the filtered image to see
how the filter effects on the image. There
are 2 types of histogram graph that been
displayed:
[1] with noise histogram image
[2] without noise histogram image

28

6.0 GANTT CHART

29

7.0 SOFTCODE – AVERAGING FILTER

function varargout = LastStand(varargin)
% LASTSTAND M-file for LastStand.fig
% LASTSTAND, by itself, creates a new LASTSTAND or raises the existing
% singleton*.
%
% H = LASTSTAND returns the handle to a new LASTSTAND or the handle to
% the existing singleton*.
%
% LASTSTAND('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LASTSTAND.M with the given input
arguments.
%
% LASTSTAND('Property','Value',...) creates a new LASTSTAND or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before LastStand_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to LastStand_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help LastStand

% Last Modified by GUIDE v2.5 20-Oct-2007 22:18:52

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @LastStand_OpeningFcn, ...
 'gui_OutputFcn', @LastStand_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

30

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before LastStand is made visible.
function LastStand_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to LastStand (see VARARGIN)

% Choose default command line output for LastStand
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes LastStand wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = LastStand_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

%***

%******************** Push button4 untuk LOAD FILE

%***

31

function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

global grayfidz;
global colorfidz;

hehe = pwd;
% PWD displays the current working directory.
% PWD returns the current directory in the string buffer

[file, pathname] = uigetfile('*.jpg','Select An Image File');

cd(pathname); % CD sets the current working directory to choosen PATHNAME.

colorfidz = imread(file); % imshow read image from choosen FILE

cd(hehe); % CD sets the current working directory to wacha.

subplot(handles.axes1);
imshow(colorfidz);
title('Load Image');

subplot(handles.axes2);
imshow(colorfidz);
title('Image With Add Noise');

subplot(handles.axes3);
imshow(colorfidz);
title('Filtering Image Without Noise');

subplot(handles.axes4);
imshow(colorfidz);
title('Filtering Image With Noise');

 % imshow show image from colorfidz

grayfidz = rgb2gray(colorfidz); % show gray image for colorfidz

save colorfidz;
% save file in M-File format.
% The data may be retrieved with LOAD

32

save grayfidz;
% save file in M-File format.
% The data may be retrieved with LOAD

%***

%******************** Push button4 untuk LOAD FILE

%***

%***

%********************* popupmenu1 untuk ADDNOISE

%***

function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
% contents{get(hObject,'Value')} returns selected item from popupmenu1

% --- Executes during object creation, after setting all properties.
function popupmenu1_CreateFcn(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

33

%***

%********************* popupmenu1 untuk ADDNOISE

%***

%***

%****************** pushbutton9 untuk EXECUTE ADDNOISE

%***

function pushbutton9_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

load colorfidz;
load grayfidz;

A = colorfidz;
B = grayfidz;

d = imnoise(B,'salt & pepper',0.09);
e = imnoise(B,'poisson');
f = imnoise(B,'gaussian',0.0,0.1);
g = imnoise(B,'speckle',0.04);

axes(handles.axes2);
cla;
% cla reset deletes from the current axes all graphics objects regardless
% of the setting of their HandleVisibility property and resets all
% axes properties, except Position and Units, to their default values.

dari = get(handles.popupmenu1, 'Value');

switch dari

 case 1
 imshow(d);
 title('Image With Add Noise');
 case 2
 imshow(e);
 title('Image With Add Noise');

34

case 3
 imshow(f);
 title('Image With Add Noise');
 case 4
 imshow(g);
 title('Image With Add Noise');

end

save colorfidz;
% save file in M-File format.
% The data may be retrieved with LOAD

save grayfidz;
% save file in M-File format.
% The data may be retrieved with LOAD

%***

%****************** pushbutton9 untuk EXECUTE ADDNOISE

%***

%***

%**************** pushbutton10 utk FILTER WITHOUT NOISE

%***

function pushbutton10_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

load grayfidz;

B = grayfidz;

axes(handles.axes3);
filt = fspecial('average', [5, 5]);
L = imfilter(B, filt, 'symmetric');
imshow(L);
title('Filtering Image Without Noise');

35

% fspecial Create 2-D special filters
% fspecial(type) creates a two-dimensional filter h of the specified type.
% fspecial returns h as a correlation kernel,
% which is the appropriate form to use with imfilter.

%***

%**************** pushbutton10 utk FILTER WITHOUT NOISE

%***

%***

%***************** pushbutton10 utk FILTER WITH NOISE

%***

function pushbutton7_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

load grayfidz;

d = imnoise(B,'salt & pepper',0.09);
e = imnoise(B,'poisson');
f = imnoise(B,'gaussian',0.0,0.1);
g = imnoise(B,'speckle',0.04);

axes(handles.axes4);
cla;

filt = fspecial('average', [5, 5]);
h = imfilter(d, filt, 'symmetric');
i = imfilter(e, filt, 'symmetric');
j = imfilter(f, filt, 'symmetric');
k = imfilter(g, filt, 'symmetric');

% symmetric is Input array values outside the bounds of the array
% are computed by mirror-reflecting the array across the array border.

daripada = get(handles.popupmenu1, 'Value');
switch daripada

36

%************** Push button8 untuk HISTOGRAM XDAK noise

%***

%***

%**************** Push button8 untuk HISTOGRAM ada noise

%***

function pushbutton8_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

load grayfidz;

d = imnoise(B,'salt & pepper',0.09);
e = imnoise(B,'poisson');
f = imnoise(B,'gaussian',0.0,0.1);
g = imnoise(B,'speckle',0.04);

figure(1)
subplot(2,1,2)
cla;

filt = fspecial('average', [5, 5]);
h = imfilter(d, filt, 'symmetric');
i = imfilter(e, filt, 'symmetric');
j = imfilter(f, filt, 'symmetric');
k = imfilter(g, filt, 'symmetric');

from = get(handles.popupmenu1, 'Value');

switch from
 case 1
 imhist(h);
 title('HISTOGRAM WITH NOISE')
 case 2
 imhist(i);

 title('HISTOGRAM WITH NOISE')

37

 case 3
 imhist(j);
 title('HISTOGRAM WITH NOISE')
 case 4
 imhist(k);
 title('HISTOGRAM WITH NOISE')
end

%***

%*************** Push button8 untuk HISTOGRAM ada noise

%***

%***

%************************ pushbutton6 utk CLOSE

%***

% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

close;

%***

%************************ pushbutton6 utk CLOSE

%***

38

8.0 DATA ANALYSIS AND RESULTS

EXPLANATION AND FUNTION OF COMMAND

1) IMNOISE

Add noise to an image

Syntax

J = imnoise(I,type)

J = imnoise(I,type,parameters)

Description

J = imnoise(I,type) adds noise of a given type to the intensity image I. type is a string that
can have one of these values.

Value and Description

a)'gaussian' for Gaussian white noise.

- J = imnoise(I,'gaussian',m,v) adds Gaussian white noise of mean m and variance v to the
image I. The default is zero mean noise with 0.01 variance.

b)'localvar' for Zero-mean Gaussian white noise with an intensity-dependent variance.

- J = imnoise(I,'localvar',V) adds zero-mean, Gaussian white noise of local variance V to
the image I. V is an array of the same size as I. J =
imnoise(I,'localvar',image_intensity,var) adds zero-mean, Gaussian noise to an image I,
where the local variance of the noise, var, is a function of the image intensity values in I.
The image_intensity and var arguments are vectors of the same size, and
plot(image_intensity,var) plots the functional relationship between noise variance and
image intensity. The image_intensity vector must contain normalized intensity values
ranging from 0 to 1.

c)'poisson' for Poisson noise.

- J = imnoise(I,'poisson') generates Poisson noise from the data instead of adding artificial
noise to the data. In order to respect Poisson statistics, the intensities of unit8 and uint16
images must correspond to the number of photons (or any other quanta of information).
Double-precision images are used when the number of photons per pixel can be much
larger than 65535 (but less than 10^12); the intensity values vary between 0 and 1 and
correspond to the number of photons divided by 10^12.
d)'salt & pepper' for On and off pixels.

39

- J = imnoise(I,'salt & pepper',d) adds salt and pepper noise to the image I, where d is the
noise density. This affects approximately d*prod(size(I)) pixels. The default is 0.05 noise
density.

e)'speckle' for Multiplicative noise.

- J = imnoise(I,'speckle',v) adds multiplicative noise to the image I, using the equation J
= I+n*I, where n is uniformly distributed random noise with mean 0 and variance v. The
default for v is 0.04.
- The mean and variance parameters for 'gaussian', 'localvar', and 'speckle' noise types are
always specified as if the image were of class double in the range [0, 1]. If the input
image is of class uint8 or uint16, the imnoise function converts the image to double, adds
noise according to the specified type and parameters, and then converts the noisy image
back to the same class as the input.
J = imnoise(I,type,parameters) accepts an algorithm type plus additional modifying
parameters particular to the type of algorithm chosen. If you omit these arguments,
imnoise uses default values for the parameters. Here are examples of the noise types and
their parameters:

2) IMSHOW

imshow(I,n) displays the intensity image I with n discrete levels of gray. If you omit n,
imshow uses 256 gray levels on 24-bit displays, or 64 gray levels on other systems.
imshow(I,[low high]) displays I as a grayscale intensity image, specifying the data range
for I. The value low (and any value less than low) displays as black; the value high (and
any value greater than high) displays as white. Values in between are displayed as
intermediate shades of gray, using the default number of gray levels. If you use an empty
matrix ([]) for [low high], imshow uses [min(I(:)) max(I(:))]; that is, the minimum value
in I is displayed as black, and the maximum value is displayed as white. imshow(BW)
displays the binary image BW. imshow displays pixels with the value 0 (zero) as black
and pixels with the value 1 as white. imshow(X,map) displays the indexed image X with
the colormap map. imshow(RGB) displays the true-color image RGB.
imshow(...,display_option) displays the image, where display_option specifies how
imshow handles the sizing of the image. display_option is a string that can have either of
these values. Option strings can be abbreviated.

3) IMREAD

The imread function supports four general syntaxes, described below.
A = imread(filename,fmt) reads a greyscale or color image from the file specified by the
string filename, where the string fmt specifies the format of the file. If the file is not in
the current directory or in a directory in the MATLAB path, specify the full pathname of
the location on your system.
For a list of all the possible values for fmt, see Supported Formats. If imread cannot find
a file named filename, it looks for a file named filename.fmt.

40

imread returns the image data in the array A. If the file contains a grayscale image, A is a
two-dimensional (M-by-N) array. If the file contains a color image, A is a three-
dimensional (M-by-N-by-3) array. The class of the returned array depends on the data
type used by the file format. See Class Support for more information.

SUPPORT FORMAT

Format : ‘bmp’
Full name : window ‘bitmap’(BMP)
Variants : 1-bit, 4-bit, 8-bit, 16-bit, 24-bit, and 32-bit uncompressed images and 4-bit and
8-bit run-length

encoded (RLE) images.
Format : 'gif'
Full name : Graphics Interchange Format (GIF)
Variants : 1-bit to 8-bit images
Format : 'jpg' or 'jpeg'
Full name : Joint Photographic Experts Group (JPEG)
Variants : Any baseline JPEG image or JPEG image with some commonly used
extensions, including:

Image Type, Bitdepth, and Compression.

For most file formats, the color image data returned uses the RGB color space. For TIFF
files, however, imread can return color data that uses the RGB, CIELAB, ICCLAB, or
CMYK color spaces. If the color image uses the CMYK color space, A is an M-by-N-by-
4 array. See the TIFF-Specific Syntax for more information.
[X,map] = imread(filename,fmt) reads the indexed image in filename into X and its
associated colormap into map. The colormap values are rescaled to the range [0,1]. [...] =
imread(filename) attempts to infer the format of the file from its content. [...] =
imread(URL,...) reads the image from an Internet URL. The URL must include the
protocol type (e.g., http://).

4) ISPC

Syntax
tf = ispc
Descriptiontf = ispc returns logical true (1) for the PC version of MATLAB and logical
false (0) otherwise.

5) Fspecial

Create 2-D special filters Syntax
h = fspecial(type)
h = fspecial(type,parameters)

41

DESCRIPTION

h = fspecial(type) creates a two-dimensional filter h of the specified type. fspecial returns
h as a correlation kernel, which is the appropriate form to use with imfilter. Type is a
string having one of these values.

Value : 'gaussian'
Description: Gaussian lowpass filter

Value : 'average'
Description: Averaging filter

Value : 'sobel'
Description: Sobel horizontal edge-emphasizing filter

Value : 'laplacian'
Description: Filter approximating the two-dimensional Laplacian operator

h = fspecial(type,parameters) accepts a filter type plus additional modifying parameters
particular to the type of filter chosen. If you omit these arguments, fspecial uses default
values for the parameters.

The following list shows the syntax for each filter type. Where applicable, additional
parameters are also shown.

a) h = fspecial('average',hsize) returns an averaging filter h of size hsize. The argument
hsize can be a vector specifying the number of rows and columns in h, or it can be a
scalar, in which case h is a square matrix. The default value for hsize is [3 3].

b) h = fspecial('disk',radius) returns a circular averaging filter (pillbox) within the square
matrix of side 2*radius+1. The default radius is 5.

c) h = fspecial('gaussian',hsize,sigma) returns a rotationally symmetric Gaussian lowpass
filter of size hsize with standard deviation sigma (positive). hsize can be a vector
specifying the number of rows and columns in h, or it can be a scalar, in which case h is a
square matrix. The default value for hsize is [3 3]; the default value for sigma is 0.5.

d) h = fspecial('laplacian',alpha) returns a 3-by-3 filter approximating the shape of the two-
dimensional Laplacian operator. The parameter alpha controls the shape of the Laplacian
and must be in the range 0.0 to 1.0. The default value for alpha is 0.2.

e) h = fspecial('log',hsize,sigma) returns a rotationally symmetric Laplacian of Gaussian
filter of size hsize with standard deviation sigma (positive). hsize can be a vector
specifying the number of rows and columns in h, or it can be a scalar, in which case h is a
square matrix. The default value for hsize is [5 5] and 0.5 for sigma.

f) h = fspecial('motion',len,theta) returns a filter to approximate, once convolved with an
image, the linear motion of a camera by len pixels, with an angle of theta degrees in a
counterclockwise direction. The filter becomes a vector for horizontal and vertical

42

motions. The default len is 9 and the default theta is 0, which corresponds to a horizontal
motion of nine pixels.

g) h = fspecial('prewitt') returns a 3-by-3 filter h (shown below) that emphasizes horizontal
edges by approximating a vertical gradient. If you need to emphasize vertical edges,
transpose the filter h'. [1 1 1 0 0 0 -1 -1 -1] To find vertical edges, or for x-
derivatives, use h'.

h) h = fspecial('sobel') returns a 3-by-3 filter h (shown below) that emphasizes horizontal
edges using the smoothing effect by approximating a vertical gradient. If you need to
emphasize vertical edges, transpose the filter h'. [1 2 1 0 0 0 -1 -2 -1]

i) h = fspecial('unsharp',alpha) returns a 3-by-3 unsharp contrast enhancement filter.
fspecial creates the unsharp filter from the negative of the Laplacian filter with parameter
alpha. alpha controls the shape of the Laplacian and must be in the range 0.0 to 1.0. The
default value for alpha is 0.2.

6) IMFILTER

Multidimensional image filtering

Syntax
B = imfilter(A,H)
B = imfilter(A,H,option1,option2,...)

Description

B = imfilter(A,H) filters the multidimensional array A with the multidimensional filter H.
The array A can be a nonsparse numeric array of any class and dimension. The result B
has the same size and class as A. Each element of the output B is computed using double-
precision floating point. If A is an integer array, then output elements that exceed the
range of the integer type are truncated, and fractional values are rounded. B =
imfilter(A,H,option1,option2,...) performs multidimensional filtering according to the
specified options. Option arguments can have the following values.

Boundary Options

Option : 'symmetric'
Description : Input array values outside the bounds of the array are computed by mirror-
reflecting the array across the array border.

43

ANALYSIS

Step

1) Press load button picture, will appear place for select image file like figure
below:

 So, we select what a picture to we choose.

44

Figure below show when we:
1) Click adds noise part and we will find a four noise part like salt and pepper, poisson,

Gaussian and speckle.
2) For figure below we choose a salt and pepper noise and we got one of from four figure

Will change become blurring and not clear.

3) Figure below show when button for filtering image noise will push, a one of
figure will change. A filtering image below show without noise. A color figure
will disappear.

45

4) Figure below show when button for filtering image noise will push, a one of
figure will change. A filtering image below show with noise. A color figure will
disappear like without noise but have a some blur at figure not clear like without
noise figure.

46

5) After filter image part, it will be have a histogram graph. Here have two
histogram :

a) Histogram with noise.
b) Histogram without noise.

6) There have a histogram button; we click each one a histogram with noise or
histogram without noise. Figure below show histogram with noise

47

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0

2 0 0 0

4 0 0 0

6 0 0 0
H IS T O G R A M W IT H N O IS E

7) Step 6 will repeat and choose for histogram without noise button part. Figure
below is show a histogram without noise compared with histogram with noise. So
we conclude for analysis, histogram without noise have more higher pixel (6000)
from histogram with noise (2000). So that why a figure without noise more clear
from a figure with noise.

0 50 100 150 200 250

0

2000

4000

6000
HISTOGRAM WITH NOISE

0 50 100 150 200 250

0

2000

4000

6000
HISTOGRAM WITHOUT NOISE

48

9.0 DISCUSSION

MATLAB® is a high-performance language for technical computing. It integrates

computation, visualization, and programming in an easy-to-use environment where

problems and solutions are expressed in familiar mathematical notation. By its typical

use, an averaging filter with GUI is able to be created and use.

There are many stages to build the program. The main part is to build the main

filtering method. The important command used in the averaging filter is filt =

fspecial('average', [5, 5]). Here, Average filtering use mean value of array by using 2-D

special filter (fspecial) by the averaging filter type and parameters 5 rows and 5 columns.

After that, the process will continued to multidimensional image filtering between the

gray image, the averaging filter with option of input array values outside the bounds of

the array are computed by mirror-reflecting the array across the array border

(‘symmetric’) by using the command of L = imfilter(B, filt, 'symmetric').

A desired image is loaded to the program by any sources but only applicable in

jpeg image. The image then is plotted to all picture viewers. There are four types of noise

which is ready to be use that is Salt & Pepper, Poisson, Gaussian and Speckle. All the

noise will give different effect of noise.Users are also able to filter the image with or

without noise. Here, there will be different between both filtered images which is the

filtered image with noise is smoothen by the noise reduction.

The next important step is to build GUI. The GUI is needed to ease the use of the

program. By using push button to load images, the program is able to access any working

directory to get images in ‘jpeg’ format. Pop up menu is used to make selection of noise.

Here, the type of noise has been fixed which are Salt & Pepper, Poisson, Gaussian and

Speckle. The user can only choose between the given options. To generate the selected

noise, the push button ‘Come on… Go!Go!Go!’ is clicked. Switch case command is used

in this stage. Then, images with noise will be generated.

49

Push buttons also used to generate filtered image with and without noise. Push

buttons format used gradually because it is the simplest command to be used rather than

other command type.

10.0 CONCLUSION

As a conclusion, we are required to use averaging filter technique to reduce noise in

image filtering. Averaging is an operation that takes an image as input, and produces a

new image as output. An averaging filter also works on the assumption that the noise in

your image is truly random. This way, random fluctuations above and below actual

image data will gradually even out as one average more and more images. Then, the

image will perform in MATLAB Graphic User Interface.

The GUI can display data in tabular form or as plots, and can group related

components.GUI is also a type of user interface which allows people to interact with a

computer and computer-controlled devices which employ graphical icons, visual

indicators or special graphical elements called "widgets", along with text, labels or text

navigation to represent the information and actions available to a user. The actions are

usually performed through direct manipulation of the graphical elements. The GUI are

tools simplify the process of laying out and programming GUIs. An result will show and

original image that was added by noise and the filtered image using averaging filter. So

we can compare an original images and filtered images. Graphic User Interface was build

with all needed parameters to show an averaging filtering process

50

11.0 BIBLIOGRAPHY

[1] Tinku Acharya and Ajoy K. Ray. Image Processing Principles and Application.A

John Willey & sons,inc.,Publication. 2005.

[2] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Addison Wesley,

Reading, MA, 1992

[3] W.K. Pratt, Digital Image Processing, 2nd ed., Wiley, New York, 1991

[4] http://en.wikipedia.org/wiki/Image_processing

[5] http://www.reindeergraphics.com

http://en.wikipedia.org/wiki/Image_processing
http://www.reindeergraphics.com/

	Image Processing In Matlab
	Fundamentals
	Image formats supported by Matlab
	Intensity image (gray scale image)
	Indexed image
	RGB image

	IMAGE FILTERING

